Journal of Pure and Applied Mathematics: Advances and Applications
Volume 17, Number 1, 2017, Pages 19-45

Available at http://scientificadvances.co.in

DOI: http://dx.doi.org/10.18642/jpamaa_07100121763

POLYANALYTIC FUNCTIONS ON
BANACH SPACES

ABTIN DAGHIGHI

Linképing University

SE-581 83

Sweden

e-mail: abtin.daghighi@liu.se
abtindaghighi@gmail.com

Abstract

We generalize to infinite dimensions the concept of polyanalytic functions.
These are our main results: (1) A characterization based upon restriction, which
generalizes a known characterization of holomorphic functions on Banach
spaces. (2) A property of special local uniform limits which yields an
approximation result. (3) We introduce meta-analytic functions on Hilbert
manifolds together with a characterization compatible with (1). We also point
out several corollaries to our characterizations.

1. Introduction

There is a well-established field of research on infinite dimensional
holomorphy, see, e.g., the books of Dineen [8] and Mujica [15]. Two basic
examples of properties which have been investigated are the problem of

approximation of a holomorphic function by entire functions (e.g., it is
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known that a holomorphic function on the unit ball centered at the origin
in a complex Banach manifold can be approximated by entire functions
on smaller balls centered at the origin, see Lempert [14]) and the Levi
problem, see overview in Dineen [8], and we mention that some results
concerning holomorphic extension of mappings from compacts are know,
which have certain additional requirements, e.g., existing holomorphic
extension to a neighbourhood of the compact for all compositions with
dual elements of the target space, see Khue & Tac [11]. We shall be
concerned with a generalization of g-analytic functions (see the survey

article Balk [2] and the references therein).

Definition 1.1 (Polyanalytic function of order q, g-analytic function).
Let U < C be a domain. A function f on U is called g-analytic on U if it

has locally near any p € U, the representation

n-1

fe) = Y aj(z p)E - D). M

j=0

with holomorphic a; (z; p). A function fis called countably analytic on U

if for every point a € U, there is a neighbourhood Up, of p such that
f(z) = z:zohk(z; p)(z - D)* for holomorphic A (z; p) on U,.

Results. We provide a generalization of g-analytic functions to
Banach manifolds. For such functions, we prove a characterization of
g-analytic functions on Banach manifolds (see Proposition 2.6) and a
property of special local uniform limits (see Proposition 2.19). We also
point out some consequences of the characterization. Then we introduce
meta-analytic functions on Banach manifolds and give a characterization
compatible to that of the g-analytic functions (see Corollary 3.7) based
upon restriction. Also here we point out some consequences of the

characterization.
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We provide the basic notions of infinite dimensional holomorphy in
Appendix A. In this text, we shall always assume Fréchet holomorphy,
i.e., any function which is called holomorphic is assumed to be locally
bounded in this text. Here, we shall begin by introduction of g-analytic

functions on Banach manifolds.
2. Absolute g-Analytic Functions on Banach Manifolds

This article concerns g-analytic functions in an infinite-dimensional

setting. For this we use monomials in conjugate variables.

Definition 2.1. Let X be a complex Banach space and let P("* X, C)

denote the space of m-homogeneous polynomials in the sense of

Definition A.2. Denote
P(™X,C)={y: X > C such that p = §(z), some ¢ € P("X, C)}. (2

Definition 2.2 (Functions of absolute order ¢). Let X be a Banach
manifold. A function f e C*(X, C) is called polyanalytic of absolute
order q or absolute q-analytic at the origin if in a neighbourhood U, of

the origin in X, f has the representation

q-1 _
f(Z) = Z Z am,mm(Z)mm’ Am, m,, € ﬁ(UO)’ My € Bm = P(mX’ (C),

m=0m,, € B,

3)

where B,, is a linearly independent basis for P(™X, C), f is called

countably analytic at 0 if it has the representation,

flz) = i D @M, @

m=0m,,eB,,
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and if the required local representation but with translation of the origin
holds near every point we simply call f absolute g-analytic or countably

analytic respectively.
2.1. A characterization based upon restriction

Obviously any absolute g-analytic function is an absolute (¢ + 1) -analytic

function. If X is a complex Banach space and V < X a finite dimensional

complex subvector space, then P e P(™X,C) implies that the

restriction  P|y, € P(™V,C). If we, for instance, denote by
z := (2, ..., z,) the complex variables in V, then any holomorphic ag on

X restricts to a function which is holomorphic in z on the finite
dimensional complex Euclidean manifold canonically obtained from the

complex vector space V.

Observation 2.3. By the homogeneity properties of any member

m,, € P(™X, C) its restriction to V has the form of a sum of monomials

—oq — _ ) . . .
zt . zp", o] = Zjocj <m, 1le, 1is a sum of elements in
U;n: 15(j V, C). Whence the restriction to V of an absolute g-analytic

function (near the origin) has the form Z:‘B‘<(I_1f;z[3(2')§13 (for some

holomorphic ag near the origin).

Observation 2.4. Fixing the variables z;, j#k 1< j<n, any
function of the form Z\B\Sq—l ag (,Z)EB reduces to a g-analytic function in

the variable z,. Because the restriction of any absolute g-analytic

function on X restricts to an absolute n - g-analytic function on any finite

n-dimensional V and by Observation 2.3 we see that being absolute
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g-analytic on X implies being g-analytic (in the one-dimensional sense of

Definition 1.1) along each one complex dimensional slice.

Note that we intentionally use the term absolute order (instead of
merely the term order) because of the absence of conditions specified to

the separate components of the variable.

Example 2.5. Let X = C? which we canonically identify as a

Euclidean complex manifold and denote z = (21, z3) € C2 the complex
coordinates. The two functions fi(z) = z'2z5 and fy(z) = Z'z5 both
belong to 7_3(7X, C) and one can easily see that they are absolute

0

4
8-analytic. However (ij fi=0# (T
622

4
— ) fo. Thus if one does not use
822
the term absolute order, then f; must be said to be of order a = (5, 4)

whereas f, should be of order o = (4, 5).

Proposition 2.6. Let X be a complex Banach space with countable

basis (in particular a complex Banach manifold with open unit ball and a
single chart), let U c X be open and let f € C1(U, C). Then f is absolute
q-analytic on U iff the restriction of f to any one-dimensional complex slice

is g-analytic in the sense of Definition 1.1.

Proof. The “only if”-direction follows from Observation 2.4. So
assume the restriction of f to any one dimensional complex slice is

g-analytic. We now use induction in ¢ € Z,. For g =1, the result is

known since locally bounded functions (in the case ¢ = 1 we can assume

ct -smooth) functions are holomorphic iff they are holomorphic along

each complex line, see, e.g., Dineen [8], p. 144. Assume ¢ > 1 and any
C97'.smooth function which is (¢ —1)-analytic along every one-

dimensional slice is absolute (¢ —1)-analytic on U. Let f € CY(U) such
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that f is g-analytic along each one-dimensional complex slice. Assume

w.l.o.g. 0 € U. Since X has a countable basis every element z € X shall
be represented as z = (Z(i))ieN and we denote the unit sphere by

S ={z € X : |¢| = 1}. Define

o ={weS: (w(i) =0,i=1,...,n—-1and w™ % 0) = (Imw(n) =0)}.
6))

We can decompose

X=|J o hw =6-w:gech 6)

wed

This means that (because f is g-analytic along every line) there are

functions a; ,,(€ - w) which are holomorphic in the variable ¢ such that

we can write

g-1 ]
G- w) = ai G wi,(eCwed, (-wel. )

1=0

Let f be defined according to Equation (7) such that f is g-analytic along
every line in U, and assume (as our induction hypothesis) that any such

function with ¢ replaced by (¢ —1) automatically defines an absolute
(g — 1) -analytic function. Recall that for any z € U, there exists {, € C

and w, € & such that z =, -w, and consider the function

R'(z) = K'(Cw, ) = C,, Vz € U. Obviously &" € P(*U, C) since,

R'(C-2)=h"(C Cw,)=C-C, =C-h'(2). ®)
Letting

hC-w):=ap,(C w),wed,(ecC, -wel, 9)
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we can decompose

f(z) = hz)+h'(z)-h"(z), zeU. (10)

By definition A(C-w) = ag ,(C - w) is already holomorphic along each
Ap- We first show that i defines a holomorphic function, which implies

that f—h =h'-h" is g-analytic along each complex line in U. Then

necessarily (because A" belongs to 5(1U, C), i.e., homogeneous anti-
linear of degree one) h'(z) defines a function which is (g —1)-analytic

along every line in U thus satisfies the conditions of the induction

hypothesis, i.e., defines an absolute (¢ —1)-analytic function. To see that
h is holomorphic let A be a complex one-dimensional slice in U. For any
two points w;, wy € &, the space M := Spanc{w;, wy} is a complex two
dimensional vector space and Euclidean manifold in which {w;, wy} form
an orthonormal Euclidean basis. Denote by ({;, {y) holomorphic
coordinates (with respect to the orthonormal basis {w;, wy}) for M

centered at the origin. Since f is g-analytic along each one dimensional

complex slice of U (by assumption) we must have that f]| u 1s separately
holomorphic with respect to (&1, &2) in U N M.

The following is a known generalization of Hartogs’ theorem in finite

dimension.

Theorem 2.7 (Avanissian & Traoré [1], Theorem 1.3, p. 264). Let

Qc C" be a domain and let z = (z, ..., z,), denote holomorphic

coordinates in C" with Rez =t x, Im z = y. Let f be a function which, for
each j, is smooth in x;, y; and polyanalytic of order o in the variable

zj =xj+1y; (in such case we shall simply say that f is separately

J
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polyanalytic of order o). Then f is jointly smooth with respect to (x, y) on

Q and furthermore is polyanalytic of order o = (o, ..., 0,).

By Theorem 2.7, f|,, is jointly g-analytic w.r.t. (C;, g) that is,

A Gwr + Cowg) = fly(Grs G2) = D @Gy, Go)EITE, (1)

0<itk<q
where a; ;.(C;, Co) is holomorphicon UNM and a; ;(5;,0) = a; 4, (G -w1),
a; 10, C2) = a; 1, (G2 -wz). Let wy, wy be chosen such that A « M NU.
Now we can cover M NU by a union of lines 1, w e & N M and
w.l.o.g. there exists ¢, d € C such that,
Ap ={G-d-w=0C (w +c-wy), § € Cl (12)
Now on the one hand,
g-1
fGr-dw) = ag (G -d-w)+ Y gy -d T, (13)
=1
and on the other hand (since A,, € M ), Equation (11) gives

f(& -d-w)=f(& -(wy +c-wy))=ag o -d-w)

LD DR R (ST ) < AN e

1<i+k<q
This implies that

a0’0|kw(z) = aO,U)lkw (2)=nhz), Vzekr,, wedNc M, (15)

hence (because the A,, w € &\ < M cover M N U) h is holomorphic

along L < M in U, since ag ¢ is holomorphicon M 1 U. Since A was an

arbitrary one-dimensional complex slice in U this yields that A is a

holomorphic function on U. Finally, the function f = h+ h'-h" is the
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sum of a holomorphic function and an absolute g-analytic function on U

thus itself an absolute g-analytic function on U. This completes the proof.
O

A consequence of Proposition 2.6 is the following result on zero sets of

absolute g-analytic functions.

Proposition 2.8. Let X be a complex Banach space with countable

basis and let f be a €271 (U, C)-smooth function on an open neighbourhood

U of 0 in X which is absolute g-analytic on U \ f_1 (0).

Proof. Let A be an arbitrary one-dimensional complex slice in U (by

which we mean that A is the intersection with U of the complex span in

X of some vector in X). If we assume f e CH7 YU, C) such that f is
absolute g-analytic on U \ f -1 (0), then we know that flx 1s a g-analytic

function on A N (U \ f71(0)).

The following two theorems (it was proved for holomorphic functions
in one variable by Radé [16] and generalized to several variables by

Cartan [5]) are known for polyanalytic functions of several variables.

Theorem 2.9 (Daghighi & Wikstrém [7]). Let Q < C" be a bounded,

simply connected domain. Let o € Z} and let f be a function on Q which

c-variable. If f is

. 20;-1 .
is separately C %™ _smooth with respect to the z;

a-analytic on Q\ f71(0), then fis a-analytic on Q.

If instead f e C?7Y(U,C) and f is absolute g-analytic on
UNTf -1 (0), then Theorem 2.19 implies that flx is a g-analytic function

on AU, so invoking Proposition 2.6 we obtain that f is absolute

g-analytic on U. This completes the proof of Proposition 2.8. O
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A consequence of the characterization given by Proposition 2.6 is a
uniqueness property. In finite dimension, it is known that vanishing of
infinite order at a single point for a holomorphic function implies
vanishing identically. We can generalize this to absolute g-analytic

functions.

Corollary 2.10 (To Proposition 2.6). Let X be a complex Banach
manifold, 0 € X, and let F be an absolute g-analytic function on X. If

there is an open 0 € U satisfying that for every k € N there exists a

constant C;, > 0 such that,

IF(2)| < Cillel”, =z eU, (16)
then F = 0.

Proof. Let A be a one-dimensional complex slice in U passing the

origin. By Proposition 2.6, the restriction f = F |7L 1s g-analytic (in one
variable, which we shall denote () near the origin, in particular
&) = ?;(} a;(C)C, where each a;(¢) is holomorphic. Furthermore,
Equation (16) implies that for every k € N there exists C), such that
If(©)] < Ck|Q|k, ze UNA It is sufficient to show that this implies
vanishing of fon A N U. We can use induction in q. If ¢ = 1 vanishing of
fon AU is immediate due to the well-known property of analytic

functions. Let ¢ > 1 and assume (as our induction hypothesis) that any

(g — 1) -analytic function g({) such that for every k € N there exists Cj,

such that |g(¢) < Ck|é;|k, z € U N A, must reduce to the zero function.
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Expanding the a;(£) near the origin we can write with holomorphic a;;,

g-1 o )
G D)= DD ai (05", (17)
i=11=0

for some open ball D(0, Ry) = C, Ry > 0. Also,

f(C,E)=Z{a f(o)]cc C e DO, Ry), as)
S atiac]

together with |f(C)|/|C|k < C}, < o, implies that

o2 £(0)

= 1
azllaglz 0, ll + lz <k, ( 9)

hence

0%a,1(0)  alaV+h f(g)
aCZQ azq —13C12

(20)

yields that a,_;(C) vanishes to infinite order at the origin and therefore

ag_1 =0 (since a,_; is holomorphic). This means that, f(C) = Z?:_oz a; @)

thus by the induction hypothesis f =0 on U () A. This completes the

proof. O
2.2. Local uniform limits

Definition 2.11. Let X be a complex Banach space with canonical
vector space topology, and let 9 < C(X, C) be a family of functions. 9

i1s said to have the one dimensional boundary maximum modulus
property if given f e M, the restriction of f to any complex one
dimensional line obeys the boundary maximum modulus principle (in the

sense that on the closure of any bounded domain |f| attains maximum on

the boundary).
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Example 2.12. For any complex submanifold V < X, 6(V) < C(V, C)

clearly has the one dimensional boundary maximum modulus property.

We shall be interested in the following families of functions which in

particular includes restrictions of absolute g-analytic functions.

Definition 2.13. Let X be a complex Banach space and let V < X be
a domain. Denote by 9(V) the set of countably analytic functions g

which obey the one-dimensional boundary maximum modulus property of

Definition 2.11 such that ée MV \ g710)). Let Uc X be a real

submanifold. Denote by 9, (U) the set of functions f defined on U such
that for every p € U there exists an open V, c X such that f can

uniformly approximated! on U ) V, by absolute g-analytic functions in

M(V,).?

Example 2.14. Let X denote a complex Banach manifold and V < X.
M (V) =6(V), when V = X is open.

Example 2.15. Let U ¢ X be a complex Banach submanifold. Then,

a1 < gz = My, (U) < My, (). (21)

Example 2.16. A consequence of the definition of P(” X, C) is that
for any m-homogeneous polynomial ,, € P, ("X, C), @,, € P("X, C),

here we mean the conjugate function, i.e., @y (2) - Oy (2) = |@(2)]%. This

can be extended to sums of m-homogeneous polynomials with complex

1By this we mean convergence in the topology of uniform convergence on compacts, see

Appendix.

2Note that the reciprocals of the approximating functions need not be absolute g-analytic,

merely countably analytic away from their singularities.
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coefficients, thus |P(z)|2 e M, (U), for any restriction to U < X, of a
polynomial P in z of order g (where U is a real submanifold).

Let X be a complex Hilbert manifold and M < X a submanifold.
T,X itself can be given the structure of a complex Hilbert space (it can

be identified with X) namely via the linear map J, : T,X —» T, X, ie.,

JIZJU = -v, Vv € T, X. Any vector subspace of 7,X which is closed under

the application of J, can then be identified as a complex vector space

(with induced complex structure from X ). Let T;,C M denote the largest
vector subspace of T, M which is invariant under the application of /,,
i.e., the largest vector subspace of T,M which under the induced
complex structure is a complex vector subspace of X. Recall that for a
C' -smooth function f the decomposition into C-linear and C-antilinear
parts, df = of + of implies that f is holomorphic on an open U = C" iff

df,

» is C-linear on T,C", Vp € U (in this case T),C" can canonically be

equipped with a complex structure).

Let X be a complex Banach space and M < X a subspace both with
induced topology and differential structure. 7, X itself can be given the
structure of a complex Banach space (it can be identified with X) namely

. . . . 2.
via the linear map Jp. TpX - TpX 1le., Jpv =-v, Vv e TpX. Any
vector subspace of 7, X which is closed under the application of </, can
then be identified as a complex vector space (with induced complex

structure from X). Let H,M (in some literature this is denoted T;C M

or T;M ) denote the largest vector subspace of 7),M which is invariant

under the application of </, ie., the largest vector subspace of T, M

p )
which under the induced complex structure is a complex vector subspace
of X.
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Example 2.17. Let X be a complex Hilbert space with open unit
ball and unit sphere denoted by M < X. The unit sphere M is
then a real-analytic submanifold with (real) tangent space

T,M ={z € X : Re((z, p)) = 0}, where (,.) denotes the inner product.
The maximal complex linear subspace of X contained in T,M is

H,M =T,M NiT,M =1{z € X : (2, p) = 0}.

Kaup [10] (2004) introduced what can be interpreted as solutions to
tangential Cauchy-Riemann equations in an infinite dimensional setting,

in terms of uniform limits of ambient holomorphic functions.

Definition 2.18. Let X be a complex Banach manifold and M < X a
smooth submanifold. A function f: M — C 1is said to satisfy the
tangential Cauchy-Riemann equations on M if for all p e X, the
differential dfp :T,M — C 1s complex linear on the subspace
H,M c T,M. A continuous function M — C 1is to satisfy the

tangential Cauchy-Riemann equations on M if it is locally the uniform
limit of a sequence of smooth functions that satisfy the tangential

Cauchy-Riemann equations on M.

Recently, Daghighi & Wikstrom [6] introduced a higher finite

dimensional more specialized version of the spaces 2, which are

denoted M, a € Z”, see Daghighi & Wikstrom [6].

o

Definition 2.19. Let V < C" be a domain. Denote by (V) the set of

countably analytic functions g which obey the one dimensional boundary

maximum modulus property of Definition 2.11 such that

ée M(V\ g710)). Let U = C" be a real submanifold. Denote by

M, (U) the set of functions f defined on U such that for every p e U
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there exists an open V,, < C" such that f can uniformly approximated on

U NV, by a-analytic functions in M(V,).?

Note that the difference between the possibility of specifying order
and absolute order in the one dimensional and the higher (but finite
complex dimensional) case was clearly pointed out in Example 2.5.
Indeed the g-analytic functions of one variable are precisely the absolute

g-analytic function. In light of Proposition 2.6, we have a method of
extending result for the spaces M, (U), a € Z7, where U = C" to the
spaces Z)ﬁq(U), geZ, and U c X for a complex Banach space X.
Indeed the restriction of a member of M, (U) to a one dimensional slice

A of Ubelongs to M, (1).

Definition 2.20. Let X be a complex Banach space and M < X bea

hypersurface. A point p, € M 1is called a pseudoconvex point if for any
finite two-dimensional complex slice py e p © X there is an open

U < X such that pN U is pseudoconvex at p, in the usual sense.

Clearly, all points of the unit sphere S < X of a complex Banach
space endowed with the topology induced by the norm, are pseudoconvex

points.

Example 2.21. Let X be a complex Banach space endowed with the
finite topology and let M < X be a hypersurface which is pseudoconvex

at py e M. Let further fe M, (U), for some (relatively) open
Po €U c M. Then there is an open V < X and an extension
Fem,(VUU), F|; = f. By considering the restrictions to finite
dimensional slices passing pq it follows from the known result in finite
dimension (see Daghighi & Wikstrém [6]) that if |f| = constant on U, then

V contains a nonempty open V' such that |F | =constant on V' U U.

3Note that the reciprocals of the approximating functions need not be a-analytic, merely

countably analytic away from their singularities.
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Here we must remind the reader that polyanalytic functions of
constant modulus on an open set are in general (in contrast to the

holomorphic case) nonconstant.
3. Meta-Analytic Functions on Hilbert Manifolds
A generalization of polyanalytic functions of order ¢ are the so called

meta-analytic functions.

Definition 3.1 (see, e.g., Balk [2]). Let Q < C be a domain and let

S(t) = s + s9t + - + 8,1t + 7 be a polynomial with complex coefficients.
Let z =x+iy denote holomorphic coordinates in C”. A function

f e C4(Q, C) is called S-meta-analytic if it satisfies on Q the equation
0
S(g )f = 0.

The following representation is known.

Theorem 3.2 (see Balk [2], p. 239, and references therein). Let

Q c C be a domain. If S is a complex polynomial with roots ai, ..., a,
with the multiplicities my, ..., m,, then a function f is S-meta-analytic in
Q iff f(z)= lepk(z)exp(ak -Z) on Q, where each P, is a
polyanalytic function (with global representation) of order my,.

For g-analytic functions, there are some known differences regarding

the properties of zero sets between the cases ¢ > 1 and g = 1.

Example 3.3. A set £ ¢ C which has a condensation point* is not

necessarily a set of uniqueness when ¢ > 1 (in contrast to the case q¢ = 1),

see, e.g., Balk [2, p. 207].

4Recall that p is a condensation point if for each open neighbourhood U of p the set U N E

is uncountable.
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However, the identity principle remains valid when passing over to

meta-analytic functions.

Proposition 3.4. Let Q c C" be a domain. Let f and g be two

S-meta-analytic functions on Q. If f = g on an open subset E — Q, then

f =g on Q.

Proof. The easy case of polyanalytic functions in one variable is
contained in Example 3.3 (more specifically Balk [2], p. 207). By Theorem
2.7, this immediately yields the result for a-analytic functions (in several

variables). Now let F(z) and G(z) be an S;-meta-analytic functions in

one complex variable z (defined on the intersection of the domains of F

and G, denoted ®, which w.l.o.g. is assumed to contain the origin) where

Si(4) is a polynomial in ¢ with roots a,...,a, of associated
multiplicities my,..., m,. By Theorem 3.2, F and G have, on o,
representations
p p
F(&) =) PiC)exp(a;z;), G) =D Q;(¢)exp(a;z;), (22)
=1 =1

where each P; and @; is polyanalytic of order m;. Now,

p
S;(D)(F-G)=0= H(z2) = (F -G)(z) = ZRJ(Z)exp(ajEJ), (23)
=

for some R;, polyanalytic of order m;. Assuming F = G on an open

subset £ — o, we have by Equation (22),

P p-l
ZRJ-(Z)exp(ajEJ) =0= Ry,(2) = —ZRJ(Z)exp(djEj) on E, (24)
i i



36 ABTIN DAGHIGHI
where 4; = a; —ap,, j=1,..., p—1. But R,(2) is polyanalytic of order

m,, so by the identity principle of polyanalytic functions the right hand

side must also be polyanalytic of order m,. However by definition

b
a, # a, for v # v thus the openness of E implies that R, = 0 on E, hence
R, = 0. So Equation (23) reduces to (F - G)(z) = Zfz_lle(z) exp(a;z;),
and iteration of the arguments become straightforward, yielding R; = 0
for j =1, ... p, hence F — G = 0. This proves Proposition 3.4. U

A corollary to Theorem 2.9 is the following:

Corollary 3.5. Let Q — C be a domain and let S(t) be a complex
polynomial of the form (a —t)", for a complex constant a and positive
integer m. Then any function f € C*™ YU, C) which S-meta-analytic on
Q\ F7H0) is S-meta-analytic on Q.

Proof. By Theorem 3.2, we have the representation f(z) = P(z)exp
(a-Zz), where each P is polyanalytic of order m on Q\ f71(0). In
particular (P_l(O))ﬂ (Q\ F50))=0. Since f is C?"!-smooth,
exp(—a - 2)f(z) is also C?™7'.smooth, in particular, P(z) has C?"7!

extension, }3, to Q by defining it to be zero on f_l(O). The function P

satisfies the conditions with respect to Q of Theorem 2.9 and therefore
defines a polyanalytic function of order m on all of Q. This in turn

implies that P(z)-exp(a-z) extends to the S-meta-analytic function

P(z) - exp(a - Z) on Q. This completes the proof. O

We shall now define an analogue of meta-analytic functions on complex

Hilbert manifolds. Let X be a complex Hilbert manifold with inner

product denoted (-, ) (in particular (v, C2) = (Cz,v) = C(v, 2), v, z € X,
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{eC). For each fix v, w e X, we have an anti-linear functional
(v, Y : X > C, whose restriction to the complex line A = {{w : { € C} c X,
defines a bianalytic function ¢ > (v, w).

Definition 3.6. Let X be a complex Hilbert manifold with inner
product denoted (-, -). Let A = {ay, ..., a,} be a set of points in X and let

m = (myq, ..., m,) e Z?. A function f:X — C is called (A, m)-meta-
analytic at py € X if there exists an open neighbourhood U of py in X

on which f has the representation,

n
f(z) = ij(z) exp(z, aj), (25)
=1
where f; (2) is an absolute j-analytic function on U, j =1, ..., n.

A corollary to the fact that absolute g-analytic functions are

g-analytic along each one-dimensional complex slice is the following.

Corollary 3.7 (To Proposition 2.6). Let X be a complex Hilbert

manifold. Let A = {qay, ..., a;} be a set of points in X and let m = (my,

..,my) e Z¥ and let f be a function which is (A, m)-meta-analytic at
po € X. Then f is an S,-meta-analytic function along every one

dimensional complex slice Spancv, where S, is a complex polynomial in
one variable, of degree Zj mj, such that (v, aj> e C isaroot of S, with

multiplicity m;.

The following is an immediate consequence of Corollary 3.5 together

with Corollary 3.7.
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Corollary 3.8. Let X be a complex Hilbert manifold and let U < X

be a bounded domain. Let a € X, m € Z, and let f e C?™1(U) be a

function which is (a, m)-meta-analytic on U\ f~10). Then f is

automatically (a, m)-meta-analytic on U.

Proposition 3.4, immediately yields the infinite dimensional version.

Corollary 3.9. Let X be a complex Hilbert manifold and let f and g be

two S-metaanalytic functions on a domain U < X. If f = g on an open

subset E c U, then f = g on U.

(1]
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(3]
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(6]
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Appendix A: Preliminaries on Infinite

Dimensional Holomorphy

For the theory of holomorphy in Banach spaces, as it will be
presented in this text, please see Dineen [8] and Mujica [15]. Let X be a
complex Banach space. By a domain Q < X we mean an open connected

set.

Definition A.1 (Continuously differentiable mapping). Let X, Y be

two locally convex spaces (e.g., Banach spaces), Q < X, Q open, and

f:Q > Y. Wesay that f e Cl(or f e CH(Q, Y)) if

_ ey [l ttv) - flx)
df(x,v) = lim #,

R>t—0
exists for all (x, v) € Q x X (in particular df is R -linear).

We denote by cs(X) the set of all continuous semi-norms on a
topological vector space X. Let X and Y be locally convex vector spaces.
Denote by £(™X,Y) the space of m-linear mappings from X™ (the
product space) to Y, and we denote by % (™ X, Y) the vector space of all
mappings in Z(™ X, Y) which are symmetric. To every ¢ € L("X,Y)
(where we do not assume continuity, thus when Y is a scalar field, this is
a subset of the algebraic dual) we associate a mapping (i) defined by
$ =¢-x™, and call $ the m-homogeneous polynomial associated to ¢.
Denote by P(™ X, Y) the sub-vector space of continuous m-homogeneous
polynomials. Then the linear mapping from the subspace of continuous
functions ¢ € Z(™X,Y) to P(™X,Y), defined by ¢ > ¢, is surjective.
Furthermore, the linear mapping from the subspace of continuous

functions in .Z(™X,Y) to P(™X,Y) defined by ¢ > ¢, is bijective.
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Definition A.2. By a polynomial, we mean a finite sum of elements
in UmP(mX, Y), and we will be considering mainly Y = C, and the set

of (C -valued continuous) polynomials on X is denoted P(X).

Definition A.3 (see Mujica [15], p. 33). Let Q c X be open and
nonempty, X locally convex. A function u : X — Y is called holomorphic

(or Fréchet holomorphic) if Va € Q, 3 a neighbourhood V < U, and a

sequence of polynomials {A,,} A,, € P("U, Y) such that,

meN?

u(x) = i A, (x —a),
m=0

uniformly for x € V.

The A,, are of course members of Z (™ X,Y) and if Y is Hausdorff

they are uniquely determined by wu.

A notion of holomorphy on finitely open subsets on complex Banach
spaces, is due to R. Gateaux, and it holds, see Bremermann [4], that
Frechét holomorphic functions are necessarily Gateaux holomorphic and
a Gateaux holomorphic function is Fréchet holomorphic if it is locally
bounded. For our purposes it suffices to know, as is pointed out in Dineen
[8], that Hartogs’ theorem (in finitely many dimensions) gives that
separate holomorphy and local boundedness implies holomorphy, thus

f:E >U — F is holomorphic iff ¢ o f| Unu, is holomorphic for every

finite dimensional U; < U.
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One can generalize the notion of manifolds by replacing the space

they are modelled on.

Definition A.4. A manifold, M, modelled over a Banach space E, is a
topological Hausdorff space, paracompact, together with an atlas

consisting of charts (¢,, U, ), where ¢, : U, — V,, V, openin E, is a
homeomorphism, and such that the transition maps ¢, o ¢§1 are C”
maps on ¢g(Us NU,), Va, . For a complex Banach manifold, we

require that the space is equipped with an atlas of biholomorphically
related charts onto open subsets of E and for a real-analytic Banach
manifold over a real Banach space we require that it have bi-real

analytically related charts onto an open subset of the Banach space.

Banach manifolds of smoothness class & are defined by requiring the

b to be bijections such that, ¢, (U,), ¢,(Uy, NUp) are open subsets of
some Banach space, and further such that the transition maps are k

times continuously differentiable.

Definition A.5 (see Lang [12], p. 25). Let M be a Cc* Banach
manifold, x € X. Let (¢, U), (v, V) be two charts at x and v e ¢§(U).

(¢, U, v), (v, V, w) are called equivalent, if
d(v o 0™ g = @,

i.e., the derivative of y o <|)_1 at ¢(x) maps v to w. A tangent vector is an

equivalence class. The set of tangent vectors of M at x is called the

tangent space at x.
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The charts on M induce vector bundle charts on the tangent bundle

TM so in particular M is a submanifold of 7M. A map [ : M; —» M,
induces a map on the tangent spaces according to, (x, v) = (f(x),df,-v),
(here we are working in local charts ¢, ¢, for M;, M, respectively, near

x and f(x)). In general, T, M will only be a topological vector space.

Appendix B: Topologies

Here we give the very basics on topologies mentioned in the text.
First of all the finite topology simply means that open set are the ones

satisfying that any finite dimensional slice is open.
Definition B.1. Let {pg}; be a family of semi-norms (i.e., a scalar

valued, subadditive, nonnegative functions) on a vector space X. Then the

sets,
{y e X|pﬁ(x -y)<r},xeX,
generate a topology (i.e., the topology 1s the smallest topology containing

the given sets) on X, which is called the topology induced by the family

{pp g, of semi-norms.

Definition B.2. A base for a topology T is a collection W < 1 such

that,

YVUet,Vx eU 3V € W such that x e V < U. (26)

X is called locally convex if it has a basis consisting of convex sets.

We have the following result on semi-norm generated topologies.
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Theorem B.3. If X is a vector space with topology induced from a
family of semi-norms, then X is a locally convex topological vector space.
Definition B.4. Let X, Y be locally convex spaces and U < Y, be

open. The topology on € of uniform convergence on compact sets, is the

topology generated by the semi-norms,
Pp k() = Mo i = supalf),  f e O(X),

where K ranges over the compact subsets of U and o ranges over
continuous semi-norms on Y. A basis for this topology is given by the

following collection of sets:

By k. = If < 0@ suplf(e) - ale)] < <}

Appendix C: Some Preliminaries on Complexification

Here we quickly give some facts on the interplay between real and
complex vector space structure. Let V be a real Banach space. Then V is
in particular a vector space over R, and can be complexified, by which we
mean C ®p V. If we first consider C ~ R? with standard basis {e;, ey},
scalar multiplication is given by (a + ib)(x ® ¢ + y ® e9) := (ax — by) ® ¢;
+ (bx + ay) ® eg. v > v ® e is an injective real linear map V — RZ ® V,
thus V'is a real subspace of C ® V. One can provethat C® V =V ® iV,
which is the reason for the notation, x ® e +y ®ey = x + 1y.
Complexification induces a conjugation av = av = a ® v. The norm of V

can be extended in a non-unique way, and two natural requirements on the

extension are |x|cgy =[]y, VX eV, and |x —iy|cey = & + Dllcgys
Vx, y € V. Conversely if we start from a complex Banach space, we can

decompose it into V ® iV, wvia a projection, tn:C®V - CQ®YV,
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satisfying n(w + v) = n(w) + n(v), nlaw) = an(w), n°(w) = w. If E is a linear
space 7 a projection on E, such that {z € E : nz = z}, {z € En(z) = 0} are
complex linear manifolds then {z € E : n(z) = 2} N{z € E : n(z) = 0} = 0,
and every ze€ E, has a unique representation =z = z; + 29,

z1 efz e E:n(z) =z}, 29 € {z € E: n(z) = 0} (see Taylor [17]).



