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Abstract 

We generalize to infinite dimensions the concept of polyanalytic functions. 
These are our main results: (1) A characterization based upon restriction, which 
generalizes a known characterization of holomorphic functions on Banach 
spaces. (2) A property of special local uniform limits which yields an 
approximation result. (3) We introduce meta-analytic functions on Hilbert 
manifolds together with a characterization compatible with (1). We also point 
out several corollaries to our characterizations. 

1. Introduction 

There is a well-established field of research on infinite dimensional 
holomorphy, see, e.g., the books of Dineen [8] and Mujica [15]. Two basic 
examples of properties which have been investigated are the problem of 
approximation of a holomorphic function by entire functions (e.g., it is 
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known that a holomorphic function on the unit ball centered at the origin 
in a complex Banach manifold can be approximated by entire functions 
on smaller balls centered at the origin, see Lempert [14]) and the Levi 
problem, see overview in Dineen [8], and we mention that some results 
concerning holomorphic extension of mappings from compacts are know, 
which have certain additional requirements, e.g., existing holomorphic 
extension to a neighbourhood of the compact for all compositions with 
dual elements of the target space, see Khue & Tac [11]. We shall be 
concerned with a generalization of q-analytic functions (see the survey 
article Balk [2] and the references therein). 

Definition 1.1 (Polyanalytic function of order q, q-analytic function). 
Let C⊂U  be a domain. A function f on U is called q-analytic on U if it 

has locally near any ,Up ∈  the representation 

( ) ( ) ( ) ,;
1

0

j
j

n

j
pzpzazf −= ∑

−

=

  (1) 

with holomorphic ( ).; pza j  A function f is called countably analytic on U 

if for every point ,Ua ∈  there is a neighbourhood pU  of p such that 

( ) ( ) ( )kkk
pzpzhzf −= ∑∞

=
;0  for holomorphic ( )pzh ;k  on .pU  

Results. We provide a generalization of q-analytic functions to 
Banach manifolds. For such functions, we prove a characterization of      
q-analytic functions on Banach manifolds (see Proposition 2.6) and a 
property of special local uniform limits (see Proposition 2.19). We also 
point out some consequences of the characterization. Then we introduce 
meta-analytic functions on Banach manifolds and give a characterization 
compatible to that of the q-analytic functions (see Corollary 3.7) based 
upon restriction. Also here we point out some consequences of the 
characterization. 
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We provide the basic notions of infinite dimensional holomorphy in 
Appendix A. In this text, we shall always assume Fréchet holomorphy, 
i.e., any function which is called holomorphic is assumed to be locally 
bounded in this text. Here, we shall begin by introduction of q-analytic 
functions on Banach manifolds. 

2. Absolute q-Analytic Functions on Banach Manifolds 

This article concerns q-analytic functions in an infinite-dimensional 
setting. For this we use monomials in conjugate variables. 

Definition 2.1. Let X be a complex Banach space and let ( )C,XmP  

denote the space of m-homogeneous polynomials in the sense of 
Definition A.2. Denote 

( ) { ( ) ( )}.,some,thatsuch:, CCC XzvXvX mm PP ∈φφ=/→/=   (2) 

Definition 2.2 (Functions of absolute order q). Let X be a Banach 

manifold. A function ( )C,XCf ∞∈  is called polyanalytic of absolute 

order q or absolute q-analytic at the origin if in a neighbourhood 0U  of 

the origin in fX ,  has the representation 

( ) ( ) ( ) ( ),,,, 0,,
1

0
CXBUazazf m

mmmmm
B

q

m
mm

mm

P⊂∈∈= ∑∑
∈

−

=
mm mm

m
O    

(3) 

where mB  is a linearly independent basis for ( ),, CXmP  f is called 

countably analytic at 0 if it has the representation, 

( ) ( ) ,,
0

mm
Bm

zazf m
mm

mm
m
∑∑
∈

∞

=

=   (4) 
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and if the required local representation but with translation of the origin 
holds near every point we simply call f absolute q-analytic or countably 
analytic respectively.  

2.1. A characterization based upon restriction 

Obviously any absolute q-analytic function is an absolute ( )1+q -analytic 

function. If X is a complex Banach space and XV ⊂  a finite dimensional 

complex subvector space, then ( )C,XP mP∈  implies that the 

restriction ( )., CVP m
V P∈  If we, for instance, denote by  

( )nzzz ,,: 1 …=  the complex variables in V, then any holomorphic βa  on 

X restricts to a function which is holomorphic in z on the finite 
dimensional complex Euclidean manifold canonically obtained from the 
complex vector space V. 

Observation 2.3. By the homogeneity properties of any member 

( )C,Xm
m P∈m  its restriction to V has the form of a sum of monomials 

,,1
1 mzz jjn n ≤α=α ∑αα …  i.e., is a sum of elements in  

( ).,1 CVjm
j P∪ =

 Whence the restriction to V of an absolute q-analytic 

function (near the origin) has the form ( ) β
β−≤β∑ zzaq 1  (for some 

holomorphic βa  near the origin). 

Observation 2.4. Fixing the variables ,1,, njjz j ≤≤≠ k  any 

function of the form ( ) β
β−≤β∑ zzaq 1  reduces to a q-analytic function in 

the variable .kz  Because the restriction of any absolute q-analytic 

function on X restricts to an absolute ⋅n  q-analytic function on any finite 

n-dimensional V and by Observation 2.3 we see that being absolute         
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q-analytic on X implies being q-analytic (in the one-dimensional sense of 
Definition 1.1) along each one complex dimensional slice. 

Note that we intentionally use the term absolute order (instead of 
merely the term order) because of the absence of conditions specified to 
the separate components of the variable. 

Example 2.5. Let 2C=X  which we canonically identify as a 

Euclidean complex manifold and denote ( ) 2
21, C∈= zzz  the complex 

coordinates. The two functions ( ) 3
2

4
11 zzzf =  and ( ) 4

2
3
12 zzzf =  both 

belong to ( )C,7 XP  and one can easily see that they are absolute           

8-analytic. However .0 2
4

2
1

4

2
fzfz 







∂
∂≡/≡







∂
∂  Thus if one does not use 

the term absolute order, then 1f  must be said to be of order ( )4,5=α  

whereas 2f  should be of order ( ).5,4=α  

Proposition 2.6. Let X be a complex Banach space with countable 
basis (in particular a complex Banach manifold with open unit ball and a 

single chart), let XU ⊂  be open and let ( )., CUCf q∈  Then f is absolute 

q-analytic on U iff the restriction of f to any one-dimensional complex slice 
is q-analytic in the sense of Definition 1.1. 

Proof. The “only if ”-direction follows from Observation 2.4. So 
assume the restriction of f to any one dimensional complex slice is            
q-analytic. We now use induction in .+∈ Zq  For ,1=q  the result is 

known since locally bounded functions (in the case 1=q  we can assume 
1C -smooth) functions are holomorphic iff they are holomorphic along 

each complex line, see, e.g., Dineen [8], p. 144. Assume 1>q  and any 
1−qC -smooth function which is ( )1−q -analytic along every one-

dimensional slice is absolute ( )1−q -analytic on U. Let ( )UCf q∈  such 
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that f is q-analytic along each one-dimensional complex slice. Assume 
w.l.o.g. .0 U∈  Since X has a countable basis every element Xz ∈  shall 

be represented as ( ( ) ) N∈= i
izz  and we denote the unit sphere by 

{ }.1: =∈= zXzS  Define 

{ ( ( ) ( ) ) ( ( ) )}.0Im0and1,,1,0: =⇒≠−==∈= nni wwniwSw …A  

(5) 

We can decompose 

{ }.::, C∈ζ⋅ζ=λλ=
∈

wX ww
w
∪
A

  (6) 

This means that (because f is q-analytic along every line) there are 
functions ( )wa wi ⋅ζ,  which are holomorphic in the variable ζ  such that 

we can write 

( ) ( ) .,,,,

1

0
Uwwwawf i

wi

q

i
∈⋅ζ∈∈ζζ⋅ζ=⋅ζ ∑

−

=

AC   (7) 

Let f be defined according to Equation (7) such that f is q-analytic along 
every line in U, and assume (as our induction hypothesis) that any such 
function with q replaced by ( )1−q  automatically defines an absolute 

( )1−q -analytic function. Recall that for any ,Uz ∈  there exists C∈ζz  

and A∈zw  such that zz wz ⋅ζ=  and consider the function  

( ) ( ) .,: Uzwhzh zzz ∈∀ζ=ζ′′=′′  Obviously ( )C,1Uh P∈′′  since, 

( ) ( ) ( ).: zhwhzh zzz ′′⋅ζ=ζ⋅ζ=ζ⋅ζ′′=⋅ζ′′   (8) 

Letting 

( ) ( ) ,,,,: ,0 Uwwwawh w ∈⋅ζ∈ζ∈⋅ζ=⋅ζ CA   (9) 
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we can decompose 

( ) ( ) ( ) ( ) ., Uzzhzhzhzf ∈′′⋅′+=   (10) 

By definition ( ) ( )wawh w ⋅ζ=⋅ζ ,0  is already holomorphic along each 

.wλ  We first show that h defines a holomorphic function, which implies 

that hhhf ′′⋅′=−  is q-analytic along each complex line in U. Then 

necessarily (because h ′′  belongs to ( ),,1 CUP  i.e., homogeneous anti-

linear of degree one) ( )zh′  defines a function which is ( )1−q -analytic 

along every line in U thus satisfies the conditions of the induction 
hypothesis, i.e., defines an absolute ( )1−q -analytic function. To see that 

h is holomorphic let λ  be a complex one-dimensional slice in U. For any 

two points ,, 21 A∈ww  the space { }21,Span: wwM C=  is a complex two 

dimensional vector space and Euclidean manifold in which { }21, ww  form 

an orthonormal Euclidean basis. Denote by ( )21, ζζ  holomorphic 

coordinates (with respect to the orthonormal basis { }21, ww ) for M 

centered at the origin. Since f is q-analytic along each one dimensional 
complex slice of U (by assumption) we must have that Mf  is separately 

holomorphic with respect to ( )21, ζζ  in .MU ∩  

The following is a known generalization of Hartogs’ theorem in finite 
dimension. 

Theorem 2.7 (Avanissian & Traoré [1], Theorem 1.3, p. 264). Let  
nC⊂Ω  be a domain and let ( ),,,1 nzzz …=  denote holomorphic 

coordinates in nC  with .Im,:Re yzxz ==  Let f be a function which, for 

each j, is smooth in jj yx ,  and polyanalytic of order jα  in the variable 

jjj iyxz +=  (in such case we shall simply say that f is separately 
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polyanalytic of order α ). Then f is jointly smooth with respect to ( )yx,  on 

Ω  and furthermore is polyanalytic of order ( ).,,1 nαα=α …  

By Theorem 2.7, Mf  is jointly q-analytic w.r.t. ( )21, ζζ  that is, 

( ) ( ) ( ) ,,,: 2121,
0

212211
k

k
k

ζζζζ=ζζ=⋅ζ+⋅ζ ∑
<+≤

i
i

qi
MM afwwf   (11) 

where ( )21, , ζζkia  is holomorphic on MU ∩  and ( ) ( ),0, 11,1, 1 waa wii ⋅ζ=ζk  

( ) ( ).,0 22,2, 2 waa wii ⋅ζ=ζk  Let 21, ww  be chosen such that .UM ∩⊂λ  

Now we can cover UM ∩  by a union of lines Mww ∩A∈λ ,  and 

w.l.o.g. there exists C∈dc,  such that, 

{ ( ) }., 12111 C∈ζ⋅+⋅ζ=⋅⋅ζ=λ wcwwdw   (12) 

Now on the one hand, 

( ) ( ) ,1,

1

1
1,01

ii
wi

q

i
w dawdawdf ζ⋅⋅+⋅⋅ζ=⋅⋅ζ ∑

−

=

  (13) 

and on the other hand (since Mw ∈λ ), Equation (11) gives 

( ) ( )( ) ( )wdawcwfwdf ⋅⋅ζ=⋅+⋅ζ=⋅⋅ζ 10,02111  

( ) ., 111,
1

kk
k

k

+

<+≤

ζ⋅ζ⋅ζ+ ∑ i
i

qi
cca   (14) 

This implies that 

( ) ( ) ( ) ,,,,00,0 Mwzzhzaza ww ww
⊂∈λ∈∀== λλ ∩A   (15) 

hence (because the Mww ⊂∈λ ∩A,  cover UM ∩ ) h is holomorphic 

along M⊂λ  in U, since 0,0a  is holomorphic on .UM ∩  Since λ  was an 

arbitrary one-dimensional complex slice in U this yields that h is a 
holomorphic function on U. Finally, the function hhhf ′′⋅′+=  is the 
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sum of a holomorphic function and an absolute q-analytic function on U 
thus itself an absolute q-analytic function on U. This completes the proof. 

 

A consequence of Proposition 2.6 is the following result on zero sets of 
absolute q-analytic functions. 

Proposition 2.8. Let X be a complex Banach space with countable 

basis and let f be a ( )C,12 UC q− -smooth function on an open neighbourhood 

U of 0 in X which is absolute q-analytic on ( ).0\ 1−fU   

Proof. Let λ  be an arbitrary one-dimensional complex slice in U (by 

which we mean that λ  is the intersection with U of the complex span in 

X of some vector in X ). If we assume ( )C,12 UCf q−∈  such that f is 

absolute q-analytic on ( ),0\ 1−fU  then we know that λf  is a q-analytic 

function on ( ( )).0\ 1−λ fU∩   

The following two theorems (it was proved for holomorphic functions 
in one variable by Radó [16] and generalized to several variables by 
Cartan [5]) are known for polyanalytic functions of several variables. 

Theorem 2.9 (Daghighi & Wikström [7]). Let nC⊂Ω  be a bounded, 

simply connected domain. Let n
+∈α Z  and let f be a function on Ω which 

is separately 12 −α jC -smooth with respect to the jz -variable. If f is              

α-analytic on ( ),0\ 1−Ω f  then f is α-analytic on .Ω  

If instead ( )C,12 UCf q−∈  and f is absolute q-analytic on 

( ),0\ 1−fU  then Theorem 2.19 implies that λf  is a q-analytic function 

on ,U∩λ  so invoking Proposition 2.6 we obtain that f is absolute            

q-analytic on U. This completes the proof of Proposition 2.8.   
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A consequence of the characterization given by Proposition 2.6 is a 
uniqueness property. In finite dimension, it is known that vanishing of 
infinite order at a single point for a holomorphic function implies 
vanishing identically. We can generalize this to absolute q-analytic 
functions. 

Corollary 2.10 (To Proposition 2.6). Let X be a complex Banach 
manifold, ,0 X∈  and let F be an absolute q-analytic function on X. If 

there is an open U∈0  satisfying that for every N∈k  there exists a 

constant 0>kC  such that, 

( ) ,, UzzCzF ∈≤ k
k   (16) 

then .0≡F  

Proof. Let λ  be a one-dimensional complex slice in U passing the 

origin. By Proposition 2.6, the restriction λ= Ff :  is q-analytic (in one 

variable, which we shall denote ζ ) near the origin, in particular  

( ) ( ) ,1
0

i
i

q
i af ζζ=ζ ∑ −
=

 where each ( )ζia  is holomorphic. Furthermore, 

Equation (16) implies that for every N∈k  there exists kC  such that 

( ) ., λ∈ζ≤ζ ∩UzCf k
k  It is sufficient to show that this implies 

vanishing of f on .U∩λ  We can use induction in q. If 1=q  vanishing of 

f on U∩λ  is immediate due to the well-known property of analytic 

functions. Let 1>q  and assume (as our induction hypothesis) that any 

( )1−q -analytic function ( )ζg  such that for every N∈k  there exists kC  

such that ( ) ,, λ∈ζ≤ζ ∩UzCg k
k  must reduce to the zero function. 
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Expanding the ( )ζia  near the origin we can write with holomorphic ,ila  

( ) ( ) ,0, ,
0

1

1

il
li

l

q

i
af ζζ=ζζ ∑∑

∞

=

−

=

  (17) 

for some open ball ( ) .0,,0 00 >⊂ RRD C  Also, 

( ) ( ) ( ),,0,0, 0
,

RDff il
lj

li

li
∈ζζζ









ζ∂ζ∂

∂
=ζζ

+

∑   (18) 

together with ( ) ,∞<≤ζζ k
k Cf  implies that 

( ) ,,00
2121

21
k<+=

ζ∂ζ∂

∂ +
llf

ll

ll
  (19) 

hence 

( ) ( ) ( ) ,00
2

2

2

2

1

11
lq

lq

l
q

l fa

ζ∂ζ∂

∂
=

ζ∂

∂
−

+−
−   (20) 

yields that ( )ζ−1qa  vanishes to infinite order at the origin and therefore 

01 ≡−qa  (since 1−qa  is holomorphic). This means that, ( ) ( ) i
i

q
i af ζζ=ζ ∑ −
=

2
0  

thus by the induction hypothesis 0≡f  on .λ∩U  This completes the 

proof.   

2.2. Local uniform limits 

Definition 2.11. Let X be a complex Banach space with canonical 
vector space topology, and let ( )C,XC⊂M  be a family of functions. M  

is said to have the one dimensional boundary maximum modulus 
property if given ,M∈f  the restriction of f to any complex one 

dimensional line obeys the boundary maximum modulus principle (in the 
sense that on the closure of any bounded domain f  attains maximum on 

the boundary). 
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Example 2.12. For any complex submanifold ( ) ( )C,, VCVXV ⊂⊂ O  

clearly has the one dimensional boundary maximum modulus property. 

We shall be interested in the following families of functions which in 
particular includes restrictions of absolute q-analytic functions. 

Definition 2.13. Let X be a complex Banach space and let XV ⊂  be 

a domain. Denote by ( )VM  the set of countably analytic functions g 

which obey the one-dimensional boundary maximum modulus property of 

Definition 2.11 such that ( ( )).0\1 1−∈ gVg M  Let XU ⊂  be a real 

submanifold. Denote by ( )UqM  the set of functions f defined on U such 

that for every Up ∈  there exists an open XVp ⊂  such that f can 

uniformly approximated1 on pVU ∩  by absolute q-analytic functions in 

( ).pVM 2 

Example 2.14. Let X denote a complex Banach manifold and .XV ⊂  

( ) ( ),1 VV O=M  when XV ⊂  is open. 

Example 2.15. Let XU ⊂  be a complex Banach submanifold. Then, 

( ) ( ).2121 UUqq qq MM ⊆⇒≤   (21) 

Example 2.16. A consequence of the definition of ( )C,XmP  is that 

for any m-homogeneous polynomial ( ) ( ),,,, CC XQXQ m
m

m
mm PP ∈∈  

here we mean the conjugate function, i.e., ( ) ( ) ( ) .2zQzzQ mmm =⋅Q  This 

can be extended to sums of m-homogeneous polynomials with complex 

                                                      
1By this we mean convergence in the topology of uniform convergence on compacts, see 
Appendix. 
2Note that the reciprocals of the approximating functions need not be absolute q-analytic, 
merely countably analytic away from their singularities. 
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coefficients, thus ( ) ( ),2 UzP qM∈  for any restriction to ,XU ⊂  of a 

polynomial P in z of order q (where U is a real submanifold). 

Let X be a complex Hilbert manifold and XM ⊂  a submanifold. 
XTp  itself can be given the structure of a complex Hilbert space (it can 

be identified with X) namely via the linear map ,: XTXTJ ppp →  i.e., 

.,2 XTvvvJ pp ∈∀−=  Any vector subspace of XTp  which is closed under 

the application of pJ  can then be identified as a complex vector space 

(with induced complex structure from X ). Let MTp
C  denote the largest 

vector subspace of MTp  which is invariant under the application of ,pJ  

i.e., the largest vector subspace of MTp  which under the induced 

complex structure is a complex vector subspace of X. Recall that for a   
1C -smooth function f the decomposition into linear-C  and antilinear-C  

parts, ffdf ∂+∂=  implies that f is holomorphic on an open nU C⊂  iff 

pdf  is linear-C  on UpT n
p ∈∀,C  (in this case n

pT C  can canonically be 

equipped with a complex structure).  

Let X be a complex Banach space and XM ⊂  a subspace both with 
induced topology and differential structure. XTp  itself can be given the 

structure of a complex Banach space (it can be identified with X) namely 

via the linear map XTXTJ ppp →:  i.e., .,2 XTvvvJ pp ∈∀−=  Any 

vector subspace of XTp  which is closed under the application of pJ  can 

then be identified as a complex vector space (with induced complex 

structure from X ). Let MH p  (in some literature this is denoted MTp
C  

or MT c
p ) denote the largest vector subspace of MTp  which is invariant 

under the application of ,pJ  i.e., the largest vector subspace of MTp  

which under the induced complex structure is a complex vector subspace 
of X. 
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Example 2.17. Let X be a complex Hilbert space with open unit     
ball and unit sphere denoted by .XM ⊂  The unit sphere M is            

then a real-analytic submanifold with (real) tangent space 
{ ( ) },0,Re: =∈= pzXzMTp  where ..,  denotes the inner product. 

The maximal complex linear subspace of X contained in MTp  is 

{ }.0,: =∈== pzXzMiTMTMH ppp ∩   

Kaup [10] (2004) introduced what can be interpreted as solutions to 
tangential Cauchy-Riemann equations in an infinite dimensional setting, 
in terms of uniform limits of ambient holomorphic functions. 

Definition 2.18. Let X be a complex Banach manifold and XM ⊂  a 
smooth submanifold. A function C→Mf :  is said to satisfy the 

tangential Cauchy-Riemann equations on M if for all ,Xp ∈  the 

differential C→MTdf pp :  is complex linear on the subspace 

.MTMH pp ⊆  A continuous function C→M  is to satisfy the 

tangential Cauchy-Riemann equations on M if it is locally the uniform 
limit of a sequence of smooth functions that satisfy the tangential 
Cauchy-Riemann equations on M. 

Recently, Daghighi & Wikström [6] introduced a higher finite 
dimensional more specialized version of the spaces qM  which are 

denoted ,, n
+α ∈α ZM  see Daghighi & Wikström [6]. 

Definition 2.19. Let nV C⊂  be a domain. Denote by ( )VM  the set of 

countably analytic functions g which obey the one dimensional boundary 
maximum modulus property of Definition 2.11 such that 

( ( )).0\1 1−∈ gVg M  Let nU C⊂  be a real submanifold. Denote by 

( )UαM  the set of functions f defined on U such that for every Up ∈  
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there exists an open n
pV C⊂  such that f can uniformly approximated on 

pVU ∩  by α-analytic functions in ( ).pVM 3 

Note that the difference between the possibility of specifying order 
and absolute order in the one dimensional and the higher (but finite 
complex dimensional) case was clearly pointed out in Example 2.5. 
Indeed the q-analytic functions of one variable are precisely the absolute 
q-analytic function. In light of Proposition 2.6, we have a method of 

extending result for the spaces ( ) ,, nU +α ∈α ZM  where nU C⊂  to the 

spaces ( ) +∈ ZqUq ,M  and XU ⊂  for a complex Banach space X. 

Indeed the restriction of a member of ( )UqM  to a one dimensional slice 

λ  of U belongs to ( ).λqM  

Definition 2.20. Let X be a complex Banach space and XM ⊂  be a 
hypersurface. A point Mp ∈0  is called a pseudoconvex point if for any 

finite two-dimensional complex slice Xp ⊂µ∈0  there is an open 

XU ⊂  such that U∩µ  is pseudoconvex at 0p  in the usual sense. 

Clearly, all points of the unit sphere XS ⊂  of a complex Banach 
space endowed with the topology induced by the norm, are pseudoconvex 
points. 

Example 2.21. Let X be a complex Banach space endowed with the 
finite topology and let XM ⊂  be a hypersurface which is pseudoconvex 
at .0 Mp ∈  Let further ( ),Uf qM∈  for some (relatively) open 

.0 MUp ⊂∈  Then there is an open XV ⊂  and an extension 

( ) ., fFUVF Uq =∈ ∪M  By considering the restrictions to finite 

dimensional slices passing 0p  it follows from the known result in finite 

dimension (see Daghighi & Wikström [6]) that if ≡f constant on U, then 

V contains a nonempty open V ′  such that ≡F constant on .UV ∪′  

                                                      
3Note that the reciprocals of the approximating functions need not be α-analytic, merely 
countably analytic away from their singularities. 
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Here we must remind the reader that polyanalytic functions of 
constant modulus on an open set are in general (in contrast to the 
holomorphic case) nonconstant. 

3. Meta-Analytic Functions on Hilbert Manifolds 

A generalization of polyanalytic functions of order q are the so called 
meta-analytic functions. 

Definition 3.1 (see, e.g., Balk [2]). Let C⊂Ω  be a domain and let 

( ) qq
n ttstsstS ++++= −
−

1
110 "  be a polynomial with complex coefficients. 

Let iyxz +=  denote holomorphic coordinates in .nC  A function 

( )C,Ω∈ qCf  is called S-meta-analytic if it satisfies on Ω  the equation 

( ) .0=
∂
∂ fzS  

The following representation is known. 

Theorem 3.2 (see Balk [2], p. 239, and references therein). Let 
C⊂Ω  be a domain. If S is a complex polynomial with roots paa ,,1 …  

with the multiplicities ,,,1 pmm …  then a function f is S-meta-analytic in 

Ω  iff ( ) ( ) ( )zazPzf p
⋅= ∑ = kkk exp1  on ,Ω  where each kP  is a 

polyanalytic function (with global representation) of order .km  

For q-analytic functions, there are some known differences regarding 
the properties of zero sets between the cases 1>q  and .1=q  

Example 3.3. A set C⊂E  which has a condensation point4 is not 
necessarily a set of uniqueness when 1>q  (in contrast to the case 1=q ), 

see, e.g., Balk [2, p. 207]. 

                                                      
4Recall that p is a condensation point if for each open neighbourhood U of p the set EU ∩  
is uncountable. 
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However, the identity principle remains valid when passing over to 
meta-analytic functions. 

Proposition 3.4. Let nC⊂Ω  be a domain. Let f and g be two          
S-meta-analytic functions on .Ω  If gf =  on an open subset ,Ω⊂E  then 

gf ≡  on .Ω  

Proof. The easy case of polyanalytic functions in one variable is 
contained in Example 3.3 (more specifically Balk [2], p. 207). By Theorem 
2.7, this immediately yields the result for α-analytic functions (in several 
variables). Now let ( )zF  and ( )zG  be an 1S -meta-analytic functions in 

one complex variable z (defined on the intersection of the domains of F 
and G, denoted ,ω  which w.l.o.g. is assumed to contain the origin) where 

( )11 tS  is a polynomial in 1t  with roots paa ,,1 …  of associated 

multiplicities .,,1 pmm …  By Theorem 3.2, F and G have, on ,ω  

representations 

( ) ( ) ( ) ( ) ( ) ( ),exp,exp
11

jjj

p

j
jjj

p

j
zaQGzaPF ζ=ζζ=ζ ∑∑

==

  (22) 

where each jP  and jQ  is polyanalytic of order .jm  Now, 

( ) ( ) ( ) ( ) ( ) ( ) ( ),exp0
1

1 jjj

p

j
zazRzGFzHGFDS ∑

=

=−=⇒=−   (23) 

for some ,jR  polyanalytic of order .jm  Assuming GF =  on an open 

subset ,ω⊂E  we have by Equation (22), 

( ) ( ) ( ) ( ) ( ) ,onˆexp0exp
1

11
EzazRzRzazR jjj

p

j
pjjj

p

j
∑∑
−

==

−=⇒=   (24) 



ABTIN DAGHIGHI 36

where .1,,1,ˆ −=−= pjaaa pjj …  But ( )zRp  is polyanalytic of order 

pm  so by the identity principle of polyanalytic functions the right hand 

side must also be polyanalytic of order .pm  However by definition 

νι aa ≠  for νι ≠  thus the openness of E implies that 0≡pR  on E, hence 

.0≡pR  So Equation (23) reduces to ( ) ( ) ( ) ( ),exp1
1 jjj

p
j zazRzGF ∑ −
=

=−  

and iteration of the arguments become straightforward, yielding 0≡jR  

for ,,1 pj …=  hence .0≡− GF  This proves Proposition 3.4.   

A corollary to Theorem 2.9 is the following: 

Corollary 3.5. Let C⊂Ω  be a domain and let ( )tS  be a complex 

polynomial of the form ( ) ,mta −  for a complex constant a and positive 

integer m. Then any function ( )C,12 UCf m−∈  which S-meta-analytic on 

( )0\ 1−Ω f  is S-meta-analytic on .Ω  

Proof. By Theorem 3.2, we have the representation ( ) ( ) expzPzf =  

( ),za ⋅  where each P is polyanalytic of order m on ( ).0\ 1−Ω f  In 

particular ( )( ) ( ( )) .00\0 11 /=Ω −− fP ∩  Since f is 12 −mC -smooth, 

( ) ( )zfza ⋅−exp  is also 12 −mC -smooth, in particular, ( )zP  has 12 −mC  

extension, ,~P  to Ω  by defining it to be zero on ( ).01−f  The function P~  

satisfies the conditions with respect to Ω  of Theorem 2.9 and therefore 
defines a polyanalytic function of order m on all of .Ω  This in turn 

implies that ( ) ( )zazP ⋅⋅ exp  extends to the S-meta-analytic function 

( ) ( )zazP ⋅⋅ exp~  on .Ω  This completes the proof.   

We shall now define an analogue of meta-analytic functions on complex 
Hilbert manifolds. Let X be a complex Hilbert manifold with inner 

product denoted ⋅⋅,  (in particular ,,,,,, Xzvzvvzzv ∈ζ=ζ=ζ  
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C∈ζ ). For each fix ,, Xwv ∈  we have an anti-linear functional 

,:, C→⋅ Xv  whose restriction to the complex line { } ,: Xw ⊂∈ζζ=λ C  

defines a bianalytic function ., wvζζ 6  

Definition 3.6. Let X be a complex Hilbert manifold with inner 
product denoted ., ⋅⋅  Let { }naaA ,,1 …=  be a set of points in X and let 

( ) .,,1
n

nmmm +∈= Z…  A function C→Xf :  is called ( )mA, -meta-

analytic at Xp ∈0  if there exists an open neighbourhood U of 0p  in X 

on which f has the representation, 

( ) ( ) ,,exp
1

jj

n

j
azzfzf ∑

=

=   (25) 

where ( )zfj  is an absolute j-analytic function on .,,1, njU …=  

A corollary to the fact that absolute q-analytic functions are                
q-analytic along each one-dimensional complex slice is the following. 

Corollary 3.7 (To Proposition 2.6). Let X be a complex Hilbert 
manifold. Let { }kaaA ,,1 …=  be a set of points in X and let ( ,1mm =  

) k
k +∈ Zm,…  and let f be a function which is ( )mA, -meta-analytic at 

.0 Xp ∈  Then f is an vS -meta-analytic function along every one 

dimensional complex slice ,vSpanC  where vS  is a complex polynomial in 

one variable, of degree ,jjm∑  such that C∈jav,  is a root of vS  with 

multiplicity .jm  

The following is an immediate consequence of Corollary 3.5 together 
with Corollary 3.7. 
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Corollary 3.8. Let X be a complex Hilbert manifold and let XU ⊂  

be a bounded domain. Let +∈∈ ZmXa ,  and let ( )UCf m 12 −∈  be a 

function which is ( )ma, -meta-analytic on ( ).0\ 1−fU  Then f is 

automatically ( )ma, -meta-analytic on U. 

Proposition 3.4, immediately yields the infinite dimensional version. 

Corollary 3.9. Let X be a complex Hilbert manifold and let f and g be 
two S-metaanalytic functions on a domain .XU ⊂  If gf =  on an open 

subset ,UE ⊂  then gf ≡  on U. 
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Appendix A: Preliminaries on Infinite 
Dimensional Holomorphy 

For the theory of holomorphy in Banach spaces, as it will be 
presented in this text, please see Dineen [8] and Mujica [15]. Let X be a 
complex Banach space. By a domain X⊂Ω  we mean an open connected 
set. 

Definition A.1 (Continuously differentiable mapping). Let YX ,  be 

two locally convex spaces (e.g., Banach spaces), Ω⊂Ω ,X  open, and 

.: Yf →Ω  We say that ( ( ))YCfCf ,or 11 Ω∈∈  if 

( ) ( ) ( ) ,lim,
0 t

xftvxfvxdf
t

−+
=

→R
 

exists for all ( ) Xvx ×Ω∈,  (in particular df is R -linear). 

We denote by ( )Xcs  the set of all continuous semi-norms on a 

topological vector space X. Let X and Y be locally convex vector spaces. 

Denote by ( )YXm ,L  the space of m-linear mappings from mX  (the 

product space) to Y, and we denote by ( )YXm
s ,L  the vector space of all 

mappings in ( )YXm ,L  which are symmetric. To every ( )YXm ,L∈φ  

(where we do not assume continuity, thus when Y is a scalar field, this is 

a subset of the algebraic dual) we associate a mapping φ̂  defined by 

,:ˆ mx⋅φ=φ  and call φ̂  the m-homogeneous polynomial associated to .φ  

Denote by ( )YXm ,P  the sub-vector space of continuous m-homogeneous 

polynomials. Then the linear mapping from the subspace of continuous 

functions ( )YXm ,L∈φ  to ( ),, YXmP  defined by ,φ̂φ 6  is surjective. 

Furthermore, the linear mapping from the subspace of continuous 

functions in ( )YXm
s ,L  to ( )YXm ,P  defined by ,φ̂φ 6  is bijective. 
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Definition A.2. By a polynomial, we mean a finite sum of elements 

in ( ),, YXm
mP∪  and we will be considering mainly ,C=Y  and the set 

of (C -valued continuous) polynomials on X is denoted ( ).XP  

Definition A.3 (see Mujica [15], p. 33). Let X⊂Ω  be open and 
nonempty, X locally convex. A function YXu →:  is called holomorphic 

(or Fréchet holomorphic) if ∃Ω∈∀ ,a  a neighbourhood ,UV ⊂  and a 

sequence of polynomials { } ( )YUAA m
mmm ,, P∈∈N  such that, 

( ) ( ),
0

axAxu m
m

−= ∑
∞

=

 

uniformly for .Vx ∈  

The mA  are of course members of ( )YXm
s ,L  and if Y is Hausdorff 

they are uniquely determined by u. 

A notion of holomorphy on finitely open subsets on complex Banach 
spaces, is due to R. Gâteaux, and it holds, see Bremermann [4], that 
Frechét holomorphic functions are necessarily Gâteaux holomorphic and 
a Gâteaux holomorphic function is Fréchet holomorphic if it is locally 
bounded. For our purposes it suffices to know, as is pointed out in Dineen 
[8], that Hartogs’ theorem (in finitely many dimensions) gives that 
separate holomorphy and local boundedness implies holomorphy, thus 

FUEf →⊃:  is holomorphic iff 
1UUf ∩Dφ  is holomorphic for every 

finite dimensional .1 UU ⊂  
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One can generalize the notion of manifolds by replacing the space 
they are modelled on. 

Definition A.4. A manifold, M, modelled over a Banach space E, is a 
topological Hausdorff space, paracompact, together with an atlas 
consisting of charts ( ),, ααφ U  where αααα →φ VVU ,:  open in E, is a 

homeomorphism, and such that the transition maps 1−
βα φφ D  are ∞C  

maps on ( ) .,, βα∀φ αββ UU ∩  For a complex Banach manifold, we 

require that the space is equipped with an atlas of biholomorphically 
related charts onto open subsets of E and for a real-analytic Banach 
manifold over a real Banach space we require that it have bi-real 
analytically related charts onto an open subset of the Banach space. 

Banach manifolds of smoothness class k  are defined by requiring the 

αφ  to be bijections such that, ( ) ( )βαααα φφ UUU ∩,  are open subsets of 

some Banach space, and further such that the transition maps are k  
times continuously differentiable. 

Definition A.5 (see Lang [12], p. 25). Let M be a kC  Banach 
manifold, .Xx ∈  Let ( ) ( )VvU ,,, /φ  be two charts at x and ( ).Uv φ∈  

( ) ( )wVvvU ,,,,, /φ  are called equivalent, if 

( ) ( )( ) ,1 wvd vx =φ/ φ
−D  

i.e., the derivative of 1−φ/ Dv  at ( )xφ  maps v to w. A tangent vector is an 

equivalence class. The set of tangent vectors of M at x is called the 
tangent space at x. 
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The charts on M induce vector bundle charts on the tangent bundle 
TM so in particular M is a submanifold of TM. A map 21: MMf →  

induces a map on the tangent spaces according to, ( ) ( ( ) ),,, vdfxfvx x ⋅6  

(here we are working in local charts ,, ϕφ  for ,, 21 MM  respectively, near 

x and ( )xf ). In general, MTx  will only be a topological vector space. 

Appendix B: Topologies 

Here we give the very basics on topologies mentioned in the text. 
First of all the finite topology simply means that open set are the ones 
satisfying that any finite dimensional slice is open. 

Definition B.1. Let { }ββp  be a family of semi-norms (i.e., a scalar 

valued, subadditive, nonnegative functions) on a vector space X. Then the 
sets, 

{ ( ) } ,, XxryxXy p ∈<−∈
β

 

generate a topology (i.e., the topology is the smallest topology containing 
the given sets) on X, which is called the topology induced by the family 
{ } ,ββp  of semi-norms. 

Definition B.2. A base for a topology τ  is a collection τ⊂W  such 

that, 

.thatsuch, UVxWVUxU ⊆∈∈∃∈∀∈∀ τ   (26) 

X is called locally convex if it has a basis consisting of convex sets. 

We have the following result on semi-norm generated topologies. 

 

 



ABTIN DAGHIGHI 44

Theorem B.3. If X is a vector space with topology induced from a 
family of semi-norms, then X is a locally convex topological vector space. 

Definition B.4. Let YX ,  be locally convex spaces and ,YU ⊂  be 

open. The topology on O  of uniform convergence on compact sets, is the 

topology generated by the semi-norms, 

( ) ( )( ) ( ),,sup: ,, Xfxfffp KK O∈α== αβ  

where K ranges over the compact subsets of U and α  ranges over 

continuous semi-norms on Y. A basis for this topology is given by the 
following collection of sets: 

{ ( ) ( ) ( ) }.sup,,  <−Ω∈=
∈

zgzffB
Kz

Kg O  

Appendix C: Some Preliminaries on Complexification 

Here we quickly give some facts on the interplay between real and 
complex vector space structure. Let V be a real Banach space. Then V is 
in particular a vector space over ,R  and can be complexified, by which we 

mean .VRC ⊗  If we first consider 2RC   with standard basis { },, 21 ee  

scalar multiplication is given by ( ) ( ) ( ) 121 : ebyaxeyexiba ⊗−=⊗+⊗+  

( ) 12. evveaybx ⊗⊗++ 6  is an injective real linear map ,2 VV ⊗→ R  

thus V is a real subspace of .V⊗C  One can prove that ,iVVV ⊗=⊗C  

which is the reason for the notation, .:21 iyxeyex +=⊗+⊗  

Complexification induces a conjugation .vavaav ⊗==  The norm of V 

can be extended in a non-unique way, and two natural requirements on the 
extension are ,, Vxxx VV ∈∀=⊗C  and ,VV iyxiyx ⊗⊗ +=− CC  

., Vyx ∈∀  Conversely if we start from a complex Banach space, we can 

decompose it into ,iVV ⊗  via a projection, ,: VV ⊗→⊗π CC  
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satisfying ( ) ( ) ( ) ( ) ( ) ( ) .,, 2 uuuaauvuvu =ππ=ππ+π=+π  If E is a linear 

space π  a projection on E, such that { } ( ){ }0,: =π∈=π∈ zEzzzEz  are 

complex linear manifolds then ( ){ } ( ){ } ,00:: /==π∈=π∈ zEzzzEz ∩  

and every ,Ez ∈  has a unique representation ,21 zzz +=  

( ){ } { ( ) }0:,: 21 =π∈∈=π∈∈ zEzzzzEzz  (see Taylor [17]).  


